II Semester M.Sc. Degree Examination, June/July 2014 (RNS) (2011-12 \& Onwards)
 MATHEMATICS

 M-204 : Partial Differential Equations

 M-204 : Partial Differential Equations}

Time : 3 Hours
Max. Marks : 80

Instructions : i) Answer any five (5) fullquestions choosing atleast (2) two from each Part.
 ii) All questions carry equal marks.

PART - A

1. a) Define the Cauchy's problem for first order partial differential equations and hence explain the method of characteristics for solving it.
b) Solve $\mathrm{xu}_{\mathrm{x}}+(\mathrm{x}+\mathrm{y}) \mathrm{u}_{\mathrm{y}}=\mathrm{u}+1$ with $\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}$ when $\mathrm{y}=0$.
c) Solve $(x+1) u_{x}+y u_{y}=0$ with $u(0, y)=e^{-y}$.
2. a) Solve : $u_{t}+u u_{x}=0$ with

$$
u(x, 0)= \begin{cases}1 & , \tag{6}\\ 1-x \leq 0 \\ 0 & , \\ 0 \leq x \leq 1\end{cases}
$$

b) Solve $\left(u^{2}-y^{2}\right) u_{x}+x y u_{y}+x u=0$ with $u=y=x, x>0$.
c) Solve $p^{2}-3 q^{2}-u=0$ with $u(x, 0)=x^{2}$.
3. a) Solve : $u_{x x x}+u_{y y y}-u_{x y y}-u_{y y y}=e^{2 x+y}+\sin (x+2 y)$.
b) Classify the equation. $y^{2} u_{x x}-2 x y u_{x y}+x^{2} u_{y y}=\frac{y^{2}}{x} u_{x}+\frac{x^{2}}{y} u_{y}$ and hence reduce it into its canonical forms.
c) Reduce the equation
$x y r-\left(x^{2}-y^{2}\right) s-x y t+y p-x q=2\left(x^{2}+y^{2}\right)$ into its canonical forms.
4. a) Explain the method of Monge's for solving the equation of the form

$$
\mathrm{Rr}+\mathrm{Ss}+\mathrm{Tt}=\mathrm{V} \text { with usual notations. }
$$

b) Solve by Monge's method $(\mathrm{Hq})^{2} r-2(1+p+q+p q) s+(1+p)^{2} t=0$.
c) Solve $\left(D^{3}+D^{2} D^{1}-D D^{1^{2}}-D^{1^{3}}\right) z=e x \cos 2 y$.

PART - B
5. a) Solve by using appropriate Fourier transform the following IBVP :

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}},-\infty<x<\infty, 0 \leq t \leq \infty
$$

subject to

$$
\left.\begin{array}{l}
u(x, 0)=f(x) \tag{8}\\
\frac{\partial u}{\partial t}(x, 0)=0
\end{array}\right\},-\infty<x<\infty
$$

b) Show that a variable separable solution of the wave equation in spherical polar co-ordinates give rise to a legendre differential equation.
6. Solve the Dirichlet and Churchill problems involving the Laplace equation in the upper-halfplane.
7. a) Solve by using appropriate Fourier transform the following IBVP :

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial \mathrm{x}^{2}} ; 0 \leq \mathrm{x}, \mathrm{t}<\infty
$$

subject to
$\begin{array}{ll}u(x, 0)=f(x), & x \geq 0 \\ u(0, t)=0 & t \geq 0\end{array}$
$u(0, t)=0 \quad, t \geq 0$.
b) Show that a variable separable solution of the diffusion equation in cylindrical polar co-ordinates gives rise to a Bessel differential equation.
8. a) Using a simple example involving a hyperbolic or elliptic or parabolic equation illustrate Green's function method.
b) By making use of a successive approximation method obtain the solution of $x u_{x}+u_{y}=u^{2}$ subject to $u(x, 0)=x^{2}, u(0, y)=0$.

